The Diffusion of Euclidean Shape

نویسنده

  • Wilfrid S. Kendall
چکیده

This paper is a preliminary report on the results of an investigation into the diffusion of Euclidean shape, using computer algebra to reduce complicated intermediate calculations to an informative final form. The computer algebra takes the form of an extension to the symbolic Itô calculus described in W.S. Kendall (1988). A substantially more detailed treatment (including details of how to obtain the results below and a description and discussion of the necessary extensions to symbolic Itô calculus) will be provided in a later paper. The results are new and will be of interest to workers in the field of statistics of shape, and perhaps also to mathematical physicists. They provide a reinforcement of the view expressed in W.S. Kendall (1988), and further argued in my contribution to the discussion of D.G. Kendall (1989), that computer algebra and the associated equipment now form a powerful tool for probabilists and statisticians, as indeed for the mathematical scientist in general. Suppose k particles X1, . . . , Xk diffuse in Euclidean n-space R n according to independent copies of an Ornstein-Uhlenbeck process. Thus X1, . . . , Xk obey the system (1.1) of stochastic differential equations

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

متن کامل

A Statistical Study of two Diffusion Processes on Torus and Their Applications

Diffusion Processes such as Brownian motions and Ornstein-Uhlenbeck processes are the classes of stochastic processes that have been investigated by researchers in various disciplines including biological sciences. It is usually assumed that the outcomes of these processes are laid on the Euclidean spaces. However, some data in physical, chemical and biological phenomena indicate that they cann...

متن کامل

Regularisation, interpolation and visualisation of diffusion tensor images using non-Euclidean statistics

Practical statistical analysis of diffusion tensor images is considered, and we focus primarily on methods that use metrics based on Euclidean distances between powers of diffusion tensors. First we describe a family of anisotropy measures based on a scale invariant power-Euclidean metric, which are useful for visualisation. Some properties of the measures are derived and practical consideratio...

متن کامل

Evaluation of Diffusion Anisotropy and Diffusion Shape in Grading of Glial Tumors

Background: The most common primary tumors of brain are gliomas. Grading of tumor is vital for designing proper treatment plans. The gold standard choice to determine the grade of glial tumor is biopsy which is an invasive method.Objective: In this study, we try to investigate the role of fractional anisotropy (diffusion anisotropy) and linear anisotropy ...

متن کامل

A Useful Family of Stochastic Processes for Modeling Shape Diffusions

 One of the new area of research emerging in the field of statistics is the shape analysis. Shape is defined as all the geometrical information of an object whose location, scale and orientation is not of interest. Diffusion in shape analysis can be studied via either perturbation of the key coordinates identifying the initial object or random evolution of the shape itself. Reviewing the f...

متن کامل

Shape anisotropy: tensor distance to anisotropy measure

Fractional anisotropy (FA), defined as the distance of a diffusion tensor from its closest isotropic tensor, has been extensively studied as quantitative anisotropy measure for diffusion tensor magnetic resonance images (DT-MRI). It has been used to reveal the white matter profile of brain images, as guiding feature for seeding and stopping in fiber tractography and for the diagnosis and assess...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1990